Sunday, March 31, 2024

Using an external clock with the RX-888 (Mk2)

The RX-888 (Mk2) and external clocking

Figure 1:
The RX-888 with external clock input (right)
The enable/disable switch is barely
visible behind the USB connector.
Click on the image for a larger version.
Note: I have posted blog two previous entries related to the RX-888 (Mk2) that you may find relevant:

Adding an external clock connection

While the internal 27 MHz TCXO in the RX-888 (Mk2) is pretty good, there may be instances where one wishes better accuracy and stability.  Fortunately, the RX-888 (Mk2) has provisions for doing so in the form of a jumper to disable the internal clock (when the jumper is removed) and a small connector (a tiny U.Fl) on board to accept that clock.

Unfortunately, it is up to the user to add the cable to feed an external clock - but short 4-6" (10-15cm) cables already fitted with a U.Fl male and SMA chassis-mount female connector are easily obtained from the likes of Amazon, EvilBay and others - just be sure that you do NOT get a "Reverse" (RP) SMA by mistake!

This leaves the jumper.  While many people simply remove the jumper and mount the external clock connector between the HF and VHF inputs - or sometimes to the right of the USB connector knowing - from then on - their RX-888 will be unusable unless there is an external clock input - I prefer to make use of the ability of the internal clock to be switched - using (ahem) a switch allowing for testing/use of the RX-888 in a "stand alone" configuration - but this is up to you.

If one is careful, it's possible to mount the external clock SMA connector and switch on the same panel as the USB connector, orienting so that its handle is toward the "Clock In" connector to indicate that an external clock is to be used - but labels or markings are always nice, too!

If one takes the route of mounting the external clock input between the HF and UHF inputs, the switch could be placed to the right of the USB connector - or, if as in the case of one of my RX-888s where I put a heat sink on the FX3 chip and there wasn't room there - I found a very small toggle switch that just fit between the case screw and left side of the USB connector and tip of this switch may be spotted just behind the USB connector in Figure 1, above.

IMPORTANT:  As the external clock input is simply wired in parallel with the internal 27 MHz clock.  What this means is that with the internal clock enabled, it will be present on the external clock input.  Similarly, if you supply a 27 MHz external clock without disabling the internal one, the two will "fight" each other and you'll get "garbage" results.


What type of signal to use as an external clock

  • The best external clock source is a 27 MHz sine wave of between 1.25 and 3.3 volts peak-to-peak.
  • A series coupling capacitance of between 100pF and 1000pF (470pF typ.) should be present on the "center pin" between the RX-888 to eliminate a DC path to ground on the signal line.

While a capacitively-coupled 27 MHz sine wave is recommended for reasons that will be mentioned later, a lot of devices offer square wave outputs - and getting these to work reliably requires at least a little bit of attention.

Using the Leo Bodnar Precision GPS Clock to drive an RX-888:

Because the RX-888 natively requires a 27 MHz clock this means that if you already have a 10 MHz standard (GPS, Rubidium, etc.) kicking around, you will not be able to use it directly.  While it's not too difficult to synthesize 27 MHz from 10 MHz (a number of Si5351-based devices can do this) it's most common for users of the RX-888 to use a device such as that sold by Leo Bodnar, which can be programmed for almost any frequency (from audio through UHF) with good precision and accuracy.

You can look at these products here:  https://www.leobodnar.com  (I have no stake in Bodnar, but I have used them and I and others have had good success.)

The most commonly-used device is the Bodnar "Mini" - which has one output - and this single output is often "daisy-chained" between RX-888s.  There is also the functionally similar LB-1420 with a single output and the "Precision GPS Reference Clock" which has two signal outputs - but there is very limited ability to set the "second" output to a specific frequency and it's mostly useful for outputting the same frequency on the two ports - or outputting a 1PPS signals on the "unused" port.

As the RX-888 (Mk2) external clock input is directly coupled to its Si5351 clock synthesizer, we have to act as if we are driving that chip directly.  While not directly specified in the Si5351 data sheets (at least the ones that I have found) testing done my myself indicates that a capacitively-coupled sine of about 750 millivolts peak-peak will trigger the '5351 reliably:  A bit of looking in online forums reveals the consensus that a 1 volt peak-peak sine wave is suggested so I would be comfortable with the suggestion of this amplitude being used a a guideline.

Testing with a square wave - such as that produced by the Leo Bodnar GPS reference revealed that the drive level was far more finicky - and this has to do with the fact that a "square" wave with a reasonably fast rise time does NOT remain a square wave for very long as it quickly turns into something rather spiky and distorted as depicted in the image below:

Figure 2:
A typical square wave output from a Bodnar GPS reference at the end of about 3 feet
(1 meter) of unterminated cable.  Ringing is evident!

This 27 MHz signal shows clear evidence of ringing:  This was measured right at the RX-888 with the signal passing through around 3 feet (1 meter) of 50 ohm coaxial cable.  As the '888 does not offer resistive termination, it presents a simple capacitance at the end of the cable and this tends to distort harmonic-rich waveforms like a square wave.

With multiple "spikes" that can occur on such waveforms due to distortion, it's possible - even likely - that certain combinations can result in multiple triggering peaks of the waveform.  In an extreme case, such distortion can cause the Si5351 to be triggered at twice the actual clock rate - but rather the result may be instability resulting in the RX-888 clocking which can be manifest as anything from no signals being "present" to those that are being off-frequency, varying, or just "noisy" - and this errant behavior may vary with temperature and slight changes in operating voltage.

It's important to realize that like the RX-888, the Bodnar is ALSO DC-coupled which explains why the above waveform in Figure 2 largely rests above the center line (zero volts) with the exception of some "ringing" which extends negative and is likely being clamped somewhat by the '888's internal diodes.

With a 3.3 volt waveform emanating from the Bodnar, we can reasonably expect that - if the signal isn't too "ringy" that a signal exceeding about 1 volt positive just once per cycle is likely to trigger the 888's Si-5351 correctly.

IMPORTANT:  If you try to directly drive an RX-888 with the output of a Bodnar, it will probably NOT work reliably!  I have observed this with my own Bodnar/RX-888s and many others have reported the same issue.

Remembering that the external clock input of the '888 goes directly to very sensitive logic devices, a simple resistive attenuator pad will do double duty:

  • Rather than a very high impedance circuit that has a low resistance path from the outside world to a sensitive logic gate, resistance to ground offers a degree of protection by offering a relatively low resistance to ground and the series resistance provides at least some limit to input currents.
  • While theoretically OK, the output of the Bodnar will not reliably drive the input of the Si5351 in the RX-888 directly, but being reduced to half or third of its original output seems to be pretty reliable and is less likely to cause clipping of diodes on the input circuit which can exacerbate ringing and other types of waveform distortion.

A 6 to 12 dB resistive pad - either 50 or 75 ohms - is a reasonable choice offering a bit of voltage reduction - but staying well above the 1 volt usability threshold - and such a pad, even if it is not connected to a 50 ohm load, will provide a bit of resistive termination, likely reducing the tenacity of reflections.  While a resistive pad does not offer DC decoupling between the center pin of the '888's external clock input, it works with the Bodnar as that device sources a square wave referenced to zero volts so the pad simply acts as a voltage divider for that square wave.

Testing has shown that the '888 seems a bit more forgiving of signal drive levels if there is a DC blocking capacitor on its signal input - something that could be provided by placing a "DC block" device (available in SMA, BNC or F-type connectors) between the '888 and the external clock source.

Caveats and warnings - and why the '888 is so finicky about its external clock

The external clock input of the RX-888 - as described in better detail in the next section of this blog post - is connected DIRECTLY to inputs within the '888 and as such, it has a few undesirable properties:

  • There is a DC connection between the external clock, the oscillator output and the input to the 888's internal Si5351 synthesizer.  This exposes the clock input directly to extremely static and voltage-sensitive inputs.
    • Because of this, it's very easy to damage the RX-888 when using and external clock, particularly if there are voltage potentials between different pieces of equipment.
  • There is diode clamping between ground and the 3.3 volt input.  In the '888, this is primarily a BAT99 dual diode, but it also includes the protection diodes of the other devices in the circuit - namely the output of the onboard 27 MHz oscillator and the input of the Si5351 itself.  At first this might seem like a good thing - and it sort of is - but this means that any signal input to the RX-888 should be capacitively coupled - or directly to a 0-3.3 volt signal.  This is one aspect of the '888 that was definitely not well considered or implemented.
    • What this means is that if you try to drive the RX-888's clock input with a source that is DC "grounded" - which includes devices that are transformer-coupled (e.g. a splitter to send the clock to multiple units) that the voltage output will be bipolar.
    • For example: 
      • If you were try to use a T1-1 isolation transformer to break a ground loop between the external clock input and the Bodnar - as well as other devices - the signal input may be 3.3 volts - but bipolar - that is, it will go above and below "ground" by about 1.65 volts - but since there is diode clamping, the negative-going signal will distort the waveform.
      • The result of this can either be finessing required to find the precise drive level to make it work at all or - sometimes - you will find the signals at the wrong frequencies (sometimes at about half the expected frequencies) if the badly-distorted waveform triggers the input of the Si5351 synthesizer in the '888 twice on every clock cycle.
All of these factors often confound users of the RX-888 (Mk2) trying to feed an external clock - and things get more complicated if multiple devices are use.  For example:
  • As with any sensitive piece of RF equipment, having multiple, disparate connections between pieces of equipment will usually end up with circulating currents - and since every conductor has resistance, this can cause noises to appear in the RF input.  A few examples:
    • The RX-888 - or any SDR - will have multiple connections to it - typically the antenna and power input.  In the case of the RX-888 and many other SDRs, this means an antenna and USB connection.
      • Isolating the RF signal lines from longitudinal currents (e.g. common mode) is a useful tool.
        • Often, this can take the form of small coaxial cable (RG-142 or RG-174) wound with 8-12 turns on an FT-140 or FT-240 core of 31 or 43 material (the former being better for lower frequencies).  This is useful for HF (160-10 meters) but it loses efficacy below this and is not helpful if your interest extends into the AM broadcast bands and lower frequencies (e.g. longwave - including LF and VLF which includes the 2200 and 630 meter amateur bands.)
        • Another tool can be an "voltage balun" - essentially an isolation transformer with no DC connection at all.  Often, these are built around the Mini-Circuits T1-1.  These lose their efficacy below a MHz or so so they may have excessive attenuation on LF and VLF frequencies.  At higher frequencies (above 10 MHz) their common-mode rejection also starts to drop meaning that in a very noisy environment, signals can "leak in" at high HF from the surrounding equipment - something that needs to be checked if you try it.
    • Power supplies and computers (via a USB cable) are notoriously noisy, so you WILL get circulating currents flowing between the devices.  Having a choking USB cable (e.g. 6-12 turns on an FT-140 or FT-240 core of 31 or 43 material) can help significantly, as can doing similar on a DC supply line and also choosing a "known RF-quiet" power supply.
    • Adding a "third" connection to the receiver - such as the external clock, in case of the RX-888 (Mk2) - can further complicate issues as it adds yet another  avenue of common-mode currents and noise.
      • This connection, too, should be appropriately isolated - but doing so is complicated by the way the external clock input is implemented.
      • The fact that the external clock device is connected to a potentially-noisy power supply and  a GPS antenna - which may or may not have its own grounding (which can further introduce circulating currents) is yet another thing about which you should be wary!
One issue that also arises is that output of devices like the Bodnar are square wave.  This, by itself, isn't a problem - and a direct connection between the Bodnar and '888  - since they both have 3.3 volt signal levels - works OK, at least with very short cables when using a 6-12 dB pad.
 
Conveying this square wave signal - particularly over greater distances and considering that the clock input to the RX-888 is high-impedance with a bit of capacitance means that long runs (anywhere near 1/4 wave at the clock frequency or longer) can result in reflections due to unterminated cables.  What one can do is put a 50-75 ohm termination at the far end of the cable. This, however, does not help with the issue of DC/galvanic isolation between individual receivers.
 
Testing the stability of your external clock mechanism:
 
As properties of solid-state devices change over temperature - and signal levels may vary depending on what other devices are connected to your clock source - it would be a very good idea to varying the clock signal to determine if you have enough margin to allow it to work if levels change, or if you are on the "ragged edge".

Reducing the signal level is the most obvious test:  The use of a step attenuator - or use a variety of fixed attenuator pads (be sure that they pass DC) and reducing the level by between 1 and 15 dB - and then observing when clocking becomes unreliable:  This will give you a good idea as to the margin between what you are feeding to the '888 and when it will quite - and it may prompt you to reduce your signal level slightly.

Using HDSDR under Windows

Determining when the clocking signal into the '888 becomes unreliable is a bit trickier in some cases.  By far the easiest is to use a program like HDSDR with the "SDDC" ExtIO driver on a fairly fast Windows computer with USB3 ports:  A higher-end Intel i5 or medium-high end Intel i7 will suffice.  Connecting the '888 to an external antenna and tuning in a reliable signal (like a shortwave broadcaster or a time station like WWV/H or CHU - or tuning it your own signal generator) while watching the waterfall will tell you immediately when the external clocking fails.

If you are using Linux with ka9q-radio, you can use the "Monitor" program to tune a signal with the audio being sent to the default audio device - but doing this is beyond the scope of the document.  If you are using a Mac, I don't have a suggestion unless someone speaks up.

Transformer-based signal isolation NOT recommended for the '888's clock input - sort of...

It is important for any receiver to minimize the amount of current circulating through the "ground" connections.  Such currents in an analog receiver can induce hum in unbalanced audio lines and if the receiver is actually a transceiver, those same signal paths can induce RF into seemingly unrelated equipment in the ham shack.

Sometimes overlooked is the fact that these same currents can induce RF currents on the cables interconnecting equipment and it is likely that these will find their way into the receiver's front end and degrade performance by raising the noise floor.  This is especially true when a computer-connect software-defined radio - like the RX-888 - is involved as we now have a connection (via the USB cable) to a device that is likely to be "noisy" at RF - namely the computer - but this also means that noise can come from other devices to which this computer is connected directly or indirectly, namely its power supply, other peripherals, its power supply - and noisy devices on the AC mains into which this power supply is plugged.

Current "balun"

For receiver RF connections one way to deal with this is to use a common-mode RF choke which is typically a dozen or so turns of coaxial cable wound on a T-140 or T-240 toroid - usually with 31 or 43 type material.  This will break up common-mode currents on the cable - at least at HF - and can reduce such issues and this works for both the signal (antenna) and external clocking lines.

At DC and mains frequencies such chokes offer little/no efficacy and at low frequencies (below a MHz or so) these chokes lose their effective series resistance owing to limited inductance.  What this means is that if you have strong circulating currents (e.g. current flowing between your antenna "ground" and house mains "ground") they will have little effect.

Voltage "balun"

A possible alternative is to use a transformer to couple between RF sources:  A reliable, low-cost, commonly-available device for this is the Mini-Circuits Labs T1-1 which provides complete galvanic isolation between the source and load with a reasonable degree of longitudinal isolation.

While the T1-1 works well for the RF input, it will not work so well for the RX-888's external clock input by itself and the reason for this is that the output from a transformer winding is, by definition, bipolar about the zero volt point.  In the case of an external clock signal of, say, 1 volt peak-peak, each half would be above and below zero volts and with a direct DC connection to the Si5351's input it is unlikely to properly drive/trigger it.

If the signal is of higher amplitude - such as our 3.3 volt square wave - half of this "ugly" waveform will lie below ground potential and that below the 0.6 volt diode conduction voltage will be clamped, potentially distorting the waveform even more.

If a transformer-based method of isolation is used it is strongly suggested that a capacitor be placed in series with the '888's signal input to allow the waveform and voltage to float above ground and avoid negative clamping.  As mentioned earlier, a "DC Block" device could be used if you choose not to build your own device.

Example homebrew devices:

Here are a few (relatively) simple devices that one could build on a piece of scrap PC board - or you could go through the effort of designing and building a board with these features.

Figure 3, below, shows a simple resistive coupler incorporating the features suggested above:
Figure 3: 
A simple 10-ish dB resistive pad with DC blocking to keep the external clock input of the RX-888 "happy" and to prevent clipping of negative-going voltage by built-in protection diodes.  The "small" capacitor value also minimized the amount of stored charge dumped into the '888 due handling/shorting of the input cable.

This diagram shows a resistive pad that offers about 10 dB of attenuation - the values being determined assuming a 50 ohm system - but since the '888's input impedance is almost exclusively capacitive (a few 10s of pF) it is operating more as a voltage divider presenting a resistive load that just happens to be around 50 ohms.  The coupling capacitor between the pad and the '888 offers DC blocking to make it more forgiving to varying signal levels.  While the capacitor blocks DC, the signal being input to the Si5351 will find its own level due to the clamping effects of the protection diodes in the '888.

Also shown is the optional inclusion of a 1000pF capacitor that can be inserted at point "X":  This will decouple DC and mains AC currents that might flow between the clock source and the RX-888 itself - but it is low enough impedance that it does not necessarily offer RF decoupling between devices.  With the circuit shown above, however, you can precede it with decoupling device - such as a common-mode choke (e.g. current balun - the type with a dozen or so turns on a toroid) or even a T1-1 transformer.

Figure 4, below, shows another possible approach:
Figure 4: 
This circuit provides both common-mode isolation and a degree of band-pass filtering of the 27 MHz clock signal:  Filtering to a sine-like waveform reduces glitching due to cabling issues (reflections, misterminations) as well as offers a degree of protection to the RX-888's input as the filter will limit the amount of energy that could be imparted.  It also provides a (small) degree of termination (<150 ohms).   The "optional" 1000pF capacitor shunts low level leakage of the 27 MHz signal due to transformer imbalance - but it is suggested that one use a common-mode choke to restore isolation at HF frequencies.


This device is slightly more complicated, but it offers several advantages:

  • "L1" is a trifilar-wound toroidal transformer (that is, its turns consist of three wires gently twisted together before winding on the toroid).  Its intrinsic inductance is around 0.22uH and with the 150pF capacitor seen on the lower half of the diagram, it resonates broadly at 27 MHz - the external clock frequency for the '888.
  • The resistors shown offer a bit of resistive termination to the signal source (a bit below 150 ohms) which can help to reduce reflections on the cable.
  • These series 150 and 100 ohm resistors "decouple" the resonant circuit from the signal path somewhat and the values were chosen to allow sufficient "Q" to offer reasonable filtering of the input signal into a fairly good sine wave.
  • Figure 5: 
    The (nearly) sine wave output from the circuit depicted
    in Figure 4.
    Click on the image for a larger version.
    As this is a transformer-coupled circuit, there is no DC connection at all between the input and output.  Because it is resonant at 27 MHz, it will also offer a degree of rejection of other signals that might be present.  As the resonant circuit is wired to the "RX-888 side" of the circuit, it offers excellent protection to it.
  • As with the previous circuit, an optional 1000pF capacitor is shown as well:  Including this will reduce the common-mode isolation between the input and output but it will suppress a bit of leakage of the 27 MHz clock signal that can occur owing to the fact that the transformer that is L1 is not perfectly balanced.

The disadvantage of this circuit is that it requires the winding of a toroidal transformer and tuning it to 27 MHz - something easily done with a NanoVNA or an oscilloscope and an oscillator.  

Figure 5 shows the resulting waveform that has passed through the circuit depicted in Figure 4:  It is nearly a sine wave and as such, it is much more resistant to causing false triggering on "ringing" edges as compared to a square wave.

Figure 6: 
The prototype transformer/filter circuit depicted in Figure 4
connected at the Bodnar, connected to the '888 with a
short BNC<>SMA jumper.
Click on the image for a larger version.

Figure 6 shows the circuit of Figure 4 in action, connected directly to the Bodnar's output and - via a very short BNC to SMA cable - to the RX-888 sitting atop it.

This prototype unit was built in a piece of copper-clad PC board material.  On the top side, the components were wired with flying leads to the connectors and "dead bug" on the copper itself:  Between the "Bodnar" and the "RX-888" side the copper was cut to provide the two separate signal "grounds" with only the transformer coupling between the two.

At some point, it may be worth designing a small PC board for this, but for the meantime a small number of these prototypes have been built and put into service very successfully.  As suggested earlier, the a step attenuator was inserted between the Bodnar and this circuit and the signal reduced until the '888 no longer reliable locked to the external clock and it was found that there was plenty of margin to assure stable operation under varying conditions.

Lots of other possibilities

Now that you know what the RX-888 "wants", you have a better idea of what you are likely to be able to "safely" use to drive the external clock input of the RX-888.

* * * * *


This page stolen from ka7oei.blogspot.com

[End]


Saturday, February 24, 2024

Repairing a dead Kenwood TS-850S

Recently, a Kenwood TS-850S - a radio from the mid-early 1990s - crossed my workbench.  While I'm not in the "repair business", I do fix my own radios, those of close friends, and occasionally those of acquaintances:  I've known this person for many years and we have several mutual friends.

If you are familiar with the Kenwood TS-850S to any degree, you'll also know that they suffer from an ailment that has struck down many pieces of electronic gear from that same era:  Capacitor Plague.

Figure 1:
The ailing TS-850S.  The display is normal - except
for the frequency display showing only dots.  This error is
accompanied by "UL" in Morse.
Click on the image for a larger version.
This isn't the same "Capacitor Plague" of which you might be aware where - particularly in the early 2000s - many computer motherboards failed due to incorrectly formulated electrolytic capacitors, but rather early-era (late 80s to mid 90s) surface-mount electrolytic capacitors that began to leak soon after they were installed.

The underlying cause?

While "failure by leaking" is a common occurrence in electronics, this failure is somewhat different in many aspects.  At about this time, electronic manufacturers were switching over to surface-mount devices - but one of the later components to be surface-mounted were the electrolytic capacitors themselves:  Up to this point it was quite common to see a circuit board where most of the components were surface-mount except for larger devices such as diodes, transistors, large coils and transformers - and electrolytic capacitors - all of which would be mounted through-hole, requiring an extra manufacturing step.

Early surface-mount electrolytic capacitors, as it turned out, had serious flaws.  In looking at the history, it's difficult to tell what aspect of their use caused the problem - the design and materials of the capacitor itself or the method by which they were installed - but it seems that whatever the cause, subjecting the capacitors themselves to enough heat to solder their terminals to the circuit board - via hot air or infrared radiation - was enough to compromise their structural integrity.

Whatever the cause - and at this point it does not matter who is to blame - the result is that over time, these capacitors have leaked electrolyte onto their host circuit boards.  Since this boron-based liquid is somewhat conductive and mildly corrosive in its own right, it is not surprising that as surface tension wicks this material across the board, it causes devastation wherever it goes, particularly when voltages are involved.

The CAR board - the cause of "display dots"

In the TS-850S, the module most susceptible to leaking capacitors is the CAR board - a circuit that produces multiple, variable frequency signals that feeds the PLL synthesizer and several IF (Intermediate Frequency) mixers.  Needless to say, when this board fails, so does the radio.

They most obvious symptom of this failure is when damage to the board is so extensive that it can no longer produce the needed signals - and if one particularly synthesizer (out of four on the board) fails, you will see that the frequency display disappears - to be replaced with just dots - and the letters "UL" are sent in Morse Code to indicate the "Unlock" condition by the PLL.

Figure 2:
The damaged CAR board.  All but one of the surface-mount
electrolytic capacitors has leaked corrosive fluid and damaged
the board.  (It looked worse before being cleaned!)
Click on the image for a larger version.
Prior to this, the radio may have started going deaf and/or transmitter output was dropping as the other three synthesizers - while still working - are losing output, but this may be indicative of another problem as well - more on this later.

Figure 2 shows what the damaged board looks like.  Actually, it looked a bit worse than that when I first removed it from the radio - several pins of the large integrated circuits being stained black.  As you can see, there are black smudges around all (but one) of the electrolytic capacitors where the corrosive liquid leaked out, getting under the green solder mask and even making its way between power supply traces where the copper was literally being eaten away.

The first order of business was to remove this board and throw it in the ultrasonic cleaner.  Using a solution of hot water and dish soap, the board was first cleaned for six minutes - flipping the board over during the process - and then very carefully, paper towels and then compressed air was used to remove the water.

Figure 3:
The CAR board taking a hot bath in soapy water in an
ultrasonic cleaner.  This removes not only debris, but spilled
electrolyte - even that which has flowed under components.
Click on the image for a larger version.
At this point I needed to remove all of the electrolytic capacitors:  Based on online research, it was common for all of them to leak, but I was lucky that the one unit that had not failed (a 47uF, 16 volt unit) "seemed" OK while all of the others (10uF, 16 volt) had disgorged their contents.

If you look at advice online, you'll see that some people recommend simply twisting the capacitor off the board as the most expedient removal procedure, but I've found that doing so with electrolyte-damaged traces often results in ripping those same traces right off the board - possibly due to thinning of the copper itself and/or some sort of weakening of the adhesive:  While I was expecting chemically-weakened traces, already, there was no reason to add injury to insult.

My preferred method of removing already-leaking capacitors is to use a pair of desoldering tweezers, which are more or less a soldering iron with two prongs that will heat both pins of the part simultaneously, theoretically allowing its quick removal.  While many capacitors are easily removed with this tool, some are more stubborn:  During manufacture, drops of glue were used under the part to hold it in place prior to soldering and this sometimes does its job too well, making it difficult to remove it.  Other times, the capacitor will explode (usually just a "pop") as it is being heated, oozing out more corrosive electrolyte.

With the capacitors removed, I tossed it in the ultrasonic cleaner for other cycle in the same warm water/soap solution to remove any additional electrolyte that had come off - along with debris from the removal process.  It is imperative when repairing boards with leaking capacitors that all traces of electrolyte be completely removed or damage will continue even after the repair.

At this point one generally needs to don magnification and carefully inspect the board.  Using a dental pick and small-blade screwdriver, I scraped away loose board masking (the green overcoating on the traces) as well as bits of copper that had detached from the board:  Having taken photos of the board prior to capacitor removal - and with the use of the Service Manual for this radio, found online - I was confident that I could determine where, exactly, each capacitor was connected.

When I was done - and the extent of the damage was better-revealed - the board looked to be a bit of a mess, but that was the fault of the leaking capacitors.  Several traces and pads in the vicinity of the defunct capacitors had been eaten away or fallen off - but since these capacitors are pretty much placed across power supply rails, it was pretty easy to figure out where they were supposed to connect.

Figure 4:
The CAR board, reinstalled for testing.
Click on the image for a larger version.
As the mounting pads for most of these capacitors were damaged or missing, I saw no point in replacing them with more surface-mount capacitors - but rather I could install through-hole capacitors on the surface, laying them down as needed for clearance - and since these new capacitors included long leads, those same leads could be used to "rebuild" the traces that had been damaged.

The photo shows the final result.  Different-sized capacitors were used as necessary to accommodate the available space, but the result is electrically identical to the original.  It's worth noting that these electrolytic capacitors are in parallel with surface-mount ceramic capacitors (which seem to have survived the ordeal) so the extra lead length on these electrolytics is of no consequence - the ceramic capacitors doing their job at RF as before.  After (later) successful testing of the board, dabs of adhesive were used to hold the larger, through-hole capacitors to the board to reduce stress on the solder connections under mechanical vibration.

Following the installation of the new capacitors, the board was again given two baths in the ultrasonic cleaner - one using the soap and water solution, and the other just using plain tap water and again, the board was patted dry and then carefully blown dry with compressed air to remove all traces of water from the board and from under components and then allowed to air dry for several hours.

Testing the board

After using an ohmmeter to make sure that the capacitors all made their proper connections, I installed the board in the TS-850S and... it didn't work as I was again greeted with a "dot" display and a Morse "UL".

I suspected that one of the "vias" - a point where a circuit traces passes from one side to another through a plated hole - had been "eaten" by the errant electrolyte.  Wielding an oscilloscope, I quickly noted that only one of the synthesizers was working - the one closest to connector CN1 - and this told me that at least one control signal was missing from the rest of the chips.  Probing with the scope I soon found that a serial data signal ("PDA") used to program the synthesizers "stopped" beyond the first chip and a bit of testing with an ohmmeter showed that from one end of the board to the other, the signal had been interrupted - no doubt in a via that had been eaten away by electrolytic action.

Figure 5:
Having done some snooping with an oscilloscope, I noted
that the "PDA" signal did not make it past the first of the
(large) synthesizer chips.  The white piece of #30 Kynar
wire-wrap wire was used to jump over the bad board "via"
Click on the image for a larger  version.

The easiest fix for this was to use a piece of small wire - I used #30 Kynar-insulated wire-wrap wire (see Figure 5) - to jumper from where this control signal was known to be good to a point where it was not good (a length of about an inch/two cm) and was immediately rewarded with all four synthesizer outputs being on the correct frequencies, tuning as expected with the front-panel controls.

Low output

While all four signals were present and on their proper frequencies - indicating that the synthesizers were working correctly - I soon noticed, using a scope, that the second synthesizer output on about 8.3 MHz was outputting a signal that was about 10% of its expected value in amplitude.  A quick test of the transmitter indicated that the maximum RF output was only about 15 watts - far below that of the 100 watts expected.

Again using the 'scope, I probed the circuit - and comparing the results with the nearly identical third synthesizer (which was working correctly) and soon discovered that the amplitude dropped significantly through a pair of 8.3 MHz ceramic filters.

The way that synthesizers 2 and 3 work is that the large ICs synthesize outputs in the 1.2-1.7 MHz area and mix this with a 10 MHz source derived from the radio's reference to yield signals around 8.375 and 8.83 MHz, respectively - but this mix results in a very ugly signal, spectrally - full of harmonics and undesired products.  With the use of these ceramic bandpass filters - which are similar to the 10.7 MHz filters those found in analog AM and FM radios - and these signals are "cleaned up" to yield the desired output over a range of the several kiloHertz that they vary depending on the bandpass filter and the settings of the front panel "slope tune" control.

Figure 6:
The trace going between C75 and CF1 was cut and a bifilar-
wound transformer was installed to step up the impedance
from Q7 to that of the filter:  R24 was also changed to 22
ohms - providing the needed "IF-7-LO3" output level at J4.
Click on the image for a larger version.

The problem here seemed to be that the two ceramic 8.3 MHz filters  (CF1, CF2) were far more lossy than they should have been.  Suspecting a bad filter, I removed them both from the circuit board and tested them using a temporary fixture on a NanoVNA:  While their "shape" seemed OK, their losses were each around 10dB more than is typical of these devices indicating that they are slowly degrading.  A quick check online revealed that these particular frequency filters were not available anywhere (they were probably custom devices, anyway) so I had to figure out what to do.

Since the "shape" of the individual filter's passbands were still OK - a few hundred kHz wide - all I needed was to get more signal:  While I could have kludged another amplifier into the circuit to make up for the loss, I decided, instead, to reconfigure the filter matching.  Driving the pair of ceramic filters is an emitter-follower buffer amplifier (Q7) - the output of which is rather low impedance - well under 100 ohms - but these types of filters typically "want" around 300-400 ohms and in this circuit, this was done using series resistors - specifically R24.  This method of "matching" the impedance is effective, but very lossy, so changing this to a more efficient matching scheme would allow me to recover some of the signal.

Replacing the 330 ohm series resistor (R24) with a 22 ohm unit and installing a bifilar-wound transformer (5 turns on a BN43-2402 binocular core) wired as a 1:4 step-up transformer (the board trace between C75 and CF1 was cut and the transformer connected across it) brought the output well into the proper amplitude range and with this success, I used a few drops of "super glue" to hold it to the bottom of the board.  It is important to note that I "boosted" the amplitude of the signal prior to the filtering because to do so after the filtering - with its very low signal level - may have also amplified spurious signals as well - a problem avoided in this method.

Rather than using a transformer I could have also used a simple L/C impedance transformation network (a series 2.2uH inductor with a 130pF capacitor to ground on the "filter side" would have probably done the trick) but the 1:4 transformer was very quick and easy to do.

With the output level of synthesizer #2 (as seen on pin CN4) now up to spec (actually 25% higher than indicated on the diagram in the service manual) the radio was now easily capable of full transmit output power, and the receiver's sensitivity was also improved - not surprising considering that the low output would have starved mixers in the radios IF.

A weird problem

After all of this, the only thing that is not working properly is "half" of the "Slope Tune" control:  In USB the "Low Cut" works - as does the "High Cut" on LSB, but the "High Cut" does not work as expected on USB and the "Low Cut" does not work as expected on LSB.  What happens with the settings that do NOT work properly, I hear the effect of the filter being adjusted (e.g. the bandwidth narrows) but the radio's tuning does not track the adjustment as it should.  What's common to both of these "failures" is that they both relate to high frequency side of the filter IF filters in the radio - the effect being "inverted" on LSB.

I know that the problem is NOT the CAR board or the PLL/synthesizer itself as these are being properly set to frequency.  What seems to NOT be happening is that for the non-working adjustments, the radio's CPU is not adjusting the tuning of the radio to track the shift of the IF frequency to keep the received signal in the same place - which seems like more of a software problem than a hardware problem:  Using the main tuning knob or the RIT one can manually offset this problem and permit tuning of both the upper and lower slopes of of the filters, but that is obviously not how it's expected to work!

In searching the Internet, I see scattered mentions of this sort of behavior on the TS-850 and TS-950, but no suggestions as to what causes it or what to do about it:  I have done a CPU reset of the radio and disconnected the battery back-up to wipe the RAM contents, but to no avail.  Until/unless this can be figured out, I advised the owner to set the affected control to its "Normal" position.  If you have experienced this problem - and especially if you know of a solution - please let me know.

Figure 7:
The frequency display shows that the synthesizer is now
working properly - as did the fact that it outputs full power
and gets good on-the-air signal reports.
Click on the image for a larger version.

Final comments

Following the repair, I went through the alignment steps in the service manual and found that the radio was slightly out alignment - particularly with respect to settings in the transmit output signal path - possibly during previous servicing to accommodate the low output due to the dropping level from the CAR board.  Additionally, the ALC didn't seem to work properly - being out of adjustment - resulting in distortion on voice peaks with excessive output power.

With the alignment sorted, I made a few QSOs on the air, getting good reports - and using a WebSDR to record my transmissions, it sounded fine as well.

Aside from the odd behavior of the "Slope Tune" control, the radio seems to work perfectly.  I'm presently convinced that this must be a software - not a hardware - problem as all of the related circuits function as they should, but don't seem to be being "told" what to do.

* * * * *

This page stolen from ka7oei.blogspot.com


[END]


Sunday, January 14, 2024

Reducing RFI (Radio Frequency Interference) for a POE (Power Over Ethernet) camera or wireless access point

One of the (many) banes of the amateur radio operator's existence is often found at the end of an Ethernet cable - specifically a device that is being powered via "Ethernet":  It is often the case that interference - from HF through UHF - emanates from such devices.

Figure 1:
POE camera with both snap-on ferrites installed -
including one as close to the camera as possible -
and other snap-on/toroids to suppress HF through VHF.
Click on the image for a larger version.

Why this happens

Ethernet by itself is usually relatively quiet from an (HF) RF standpoint:  The base frequency of modern 100 Megabit and gigabit Ethernet is typically above much of HF and owing to the fact that the data lines are coupled via transformers making them inherently balanced and less prone to radiate.  Were this not the case, the integrity of the data itself would be strongly affected by the adjacent wires within the cable or even if the cable was routed near metallic objects as it would radiate a strong electromagnetic field - and any such coupling would surely affect the signal by causing reflections, attenuation, etc.

This is NOT the case with power that is run via the same (Ethernet) cable.  Typically, this power is sourced by a switching power supply - too often one that is not filtered well - and worse, the device at the far end of the cable (e.g. a camera or WiFi access point - to name two examples) is often built "down to a cost" and itself contains a switching voltage converter with rather poor filtering that is prone to radiation of RF energy over a wide spectrum.  Typically lacking effective common-mode filtering - particularly at HF frequencies (it would add expense and increase bulk) - the effect of RF radiating from the power-conducting wires in an Ethernet cable can be severe.

Even worse than this, Ethernet cables are typically long - often running in walls or ceilings - effectively making them long, wire antennas, capable of radiating (and intercepting) signals even at HF.  The "noisy" power supply at one or both ends of this cable can act as transmitters.

What to do

While some POE configurations convey the DC power on the "spare" conductors in an eight conductor cable (e.g. the blue and brown pairs), some versions use the data pairs themselves (often using center-tapped transformers in the Ethernet PHY) meaning that it may not be easy to filter just the DC power.

While it is theoretically possible to extract the power from the Ethernet cable, filter it and and reinsert it on the cable, the various (different) methods of doing this complicate the matters and doing so - particularly if the DC is carried on the data pairs - can degrade the data integrity by requiring the data to transit two transforms incurring potential signal attenuation, additional reflection and affecting frequency response - to name just a few.  Doing this is complicated by the fact that the method of power conveyance varies as you may not know which method is used by your device(s).

It is possible to subject the entire cable and its conductors to a common-mode inductance to help quash RFI - but this must be done carefully to maintain signal integrity.

Comment: 

Some POE cameras also have a coaxial power jack that permits it to be powered locally rather than needing to use POE.  I've observed that it is often the case that using this local power - which is often 12-24 volts DC (depending on the device) - will greatly reduce the noise/interference generated by the camera and conducted on the cable - provided, of course, that the power supply itself is not a noise source.  Even if a power supply is used near the camera, I would still suggest putting its DC power cable through ferrite devices as described below to further-reduce possible emissions.
There are some devices (such as those sold by DX Engineering) that are essentially back-to-back signal transformers that can reduce radiation of signals from Ethernet cable, but these typically do not permit the passage of power and are not candidates for use with POE devices.

Ferrite can be your friend

For VHF and UHF, simple snap-on ferrites can significantly attenuate the conduction of RF along, but these devices are unlikely to be effective at HF - particularly on the lower bands - as they simply cannot add enough impedance at lower frequencies.

To effectively reduce the conduction of RF energy at HF, one could wrap the Ethernet cable around a ferrite toroidal core, but this is often fraught with peril, particularly with cable carrying Gigabit Ethernet - as tight radius turns can distort the geometry of typical CAT-5/6 cable, affect the impedance and cause cross-coupling into other wire pairs.  If this happens, one often finds that the Ethernet cable doesn't work reliably at Gigabit speeds anymore (being stuck at 100 or even 10 Megabits/second) or starts to "flap" - switching between different speeds and/or slowing down due to retransmissions on the LAN.

One type of Ethernet cable that is quite resistant to geometric distortion caused by wrapping around a toroidal core is the flat Ethernet cable (sometimes erroneously referred to as "CAT6" or "CAT7").  This cable is available as short jumpers around 6 feet (2 meters) long and, with the aid of a female-female 8P8C (often called "RJ-45") coupler can be inserted into an existing Ethernet cable run - just be sure that it is from a reputable source and rated for "Gig-E" service.  As it is quite forgiving to being wrapped around ferrites, this flat cable can be pre-wound with such devices and inserted at the Ethernet switch end and/or the device end at a later time.  I have found that with reasonable quality cable and couplers that this does not seem to degrade the integrity of the data on the LAN cable - at least for moderate lengths (e.g. 50 feet/15 meters or less) - your mileage may vary with very long cable runs.

As the flat cable and female-female Ethernet coupler are to be inserted into the cable run, they must be of known, good quality so it is best to test the couplers and cable that you obtain prior to installation to be sure that their use doesn't cause a reduction in signal quality/speed.

Practical examples

Best attenuation across HF

Figure 2:
Three toroids wound on "flat" Ethernet cable.  An FT114-43
is used on each end with an FT114-31 in the middle.
Click on the image for a larger version.
Using a test fixture with a VNA, I determined that for best overall attenuation across the entire HF spectrum I needed three ferrite toroids on the 2 meter long flat Ethernet jumper.  All three of these were FT-114 size (1.14", 29mm O.D.) with the first and last being of material type 43 and the center being type 31:  Both types 31 and 43 offer good impedance to low HF but 43 is more effective on the higher bands - namely 10 and 6 meters - and types 52 and 61 may be useful at even higher bands:  The three toroids, separated by a few inches/cm, offer better all-around rejection from 160 meters through 10/6 meters than just one.  Having said this, it is unrealistic to expect more than 20dB or so of attenuation to be afforded by ferrite devices at high HF/low VHF - "because physics".

One might be tempted to use the more-available FT-240 size of toroids (2.4", 60mm O.D.) but this is unnecessarily large, comparatively fragile and expensive:  While you can fit more turns on the larger toroid, one hits the "point of diminishing returns" (e.g. little improvement with additional turns) very quickly owing to the nature of the ferrite and coupling between turns.  Using the FT114 or FT140 sizes is the best balance as it may be much less expensive than a larger device, it can accept 6-8 turns with the cable's connector installed, and more than 6-8 turns is rapidly approaching the point of diminishing returns for a single ferrite device, anyway.

In bench testing with a fixture, it was found that three toroids on a piece of flat Ethernet cable provided the best, overall attenuation across HF and to 6 meters - significantly better than any combination of FT114, FT140 or FT240 toroids of either 43 or 31 mix alone:  Figure 2, above, shows what this looks like.  Two FT114-43 and one FT114-31 toroid were used - the #31 toroid being placed in the center, providing the majority of series impedance at low HF and a #43 at each end being more effective at higher HF through 6 meters.

To construct this, the flat Ethernet cable was then marked with a silver marker in the center and four turns were wound from each end, in turn, for a total of eight turns on the FT114-31.  Placing an FT114-43 at 12 inches (25cm) and winding seven turns puts the FT114-43 fairly close to each connector, allowing the installation of one or two snap-on ferrites very close  to the connector if it is determined that more suppression is required to suppress radiation at VHF frequencies.  Small zip-ties (not shown in Figure 2) are used to help keep the turns from bunching up too much and also to prevent the start and stop turns from getting too close to each other:  Do not cinch these ties up enough to distort the geometry of the Ethernet cable as that could impact speed - particularly when using Gig Ethernet.

It is important that, as much as possible, one NOT place a "noisy" cable in a bundle with other cables or to loop it back onto itself - both of which could cause inadvertent coupling of the RFI that you are trying to suppress into the other conductors - or to the far side of the cable you are installing.

Best attenuation at VHF and HF

If you are experiencing interference from HF through VHF, you will need to take a hybrid approach:  The use of appropriate snap-on and toroidal ferrite devices.  While snap-on ferrite devices are not particularly useful for HF - especially below about 20 MHz - they can be quite effective at VHF, which is to be expected as that is the purpose for which they are typically designed.  Similarly, a ferrite toroid such as that described above - particularly with type 43 or 31 material - will likely have little effect on VHF radiation - particularly in the near field.

Figure 3:
A combination of a snap-on device with an extra turn looped
through it and two ferrites to offer wide-band suppression
from HF through VHF.
Click on the image for a larger version.

Figure 3 shows such a hybrid approach with a snap-on device on the left and two toroids on the right to better-suppress a wider range of frequencies.  In this case it is important that the snap-on device be placed as close to the interference source as possible (typically the camera) as even short lead lengths can function as effective antennas at VHF/UHF.  You may also notice that the snap-on has two turns through its center as this greatly improves efficacy at medium/low VHF frequencies but may be counter-productive at high VHF/UHF frequencies owing to coupling between turns.

Doing this by itself is not likely to be as effective in reducing radiation at VHF/UHF from the cable itself, often requiring the placement of additional ferrite devices.  Figure 1 shows the installation of several snap-on devices placed as close to the POE camera as physically possible - mainly to reduce radiation at VHF and UHF as at those frequencies where even a few inches or centimeters of cable emerging from the noise-generating device can act as an effective antenna.

Determining efficacy

During the installation of these devices on my POE cameras I was interested in how much attenuation would be afforded at VHF:  Since I'd already used the "chokes on a flat cable" approach like that in Figures 2 and 3 I knew that this would likely be as effective as was practical at HF - but because the VHF/UHF noise could be radiated by comparatively short lengths of "noisy" cable - and that the 43 and 31 mix ferrites were probably not as effective at those frequencies - I needed to be able to quantify that what I did made a difference - or not.

Figure 4:
The cable in Figure 3 installed, but not yet
tucked into place as depicted in Figure 1.
(This does not show the snap-on ferrites installed
where the wire exits the camera housing.
)
The female-female RJ45/8P8C "splice" can be
seen in the upper-left corner of the picture.
Click on the image for a larger version.

For HF this was quite simple:  I simply tuned my HF receiver - connected to my main antenna - to a frequency where I knew that I could hear the noise from the cameras and compared S-meter readings with the system powered up and powered down.  This approach is best done at a time during which the frequency in question is "dead" or at least weak (e.g. poor propagation) - 80/40 meters during the midday and 15/10 meters at night is typical.

For VHF this required a bit more specialized equipment.  My "Go-To" device for finding VHF signals - including noise - is my VK3YNG DF sniffer which has extremely good sensitivity - but it also has an audible "S-meter" in terms of a tone that rises with increasing signal level:  This allowed an "eyes and hands off" approach in determining efficacy of the installation of a ferrite device simply by hearing the pitch of the tone..  Switching it to this mode and placing it and its antenna at a constant distance fairly close to the device being investigated allowed me to "hear" - in the form of a lower-pitched tone - whether or not the application of a ferrite device made a difference.

Slightly less exotic would be an all-mode receiver capable of tuning 2 meters such as the Yaesu FT-817, Icom IC-706, 703 or 705.  In this case the AM mode would be selected and the RF gain control advanced such that the noise amplitude audibly decreased:  This step is important as not doing this could mean that if the noise decreased, the AGC in the receiver would simply compensate and hiding the fact that the signal level changed.  By listening for a decrease in the noise level one can "hear" when installing a snap-on ferrite made a difference - or not.

One cannot use a receiver in FM mode for this as an FM detector is designed to produce the same amount of audio (including noise) at any signal level:  A strong noise source and a weak one will sound exactly the same.  It's also worth noting that the S-meter on a receiver in FM mode - or an FM-only receiver - are typically terrible in the sense that their indications typically start with a very low signal and "peg" the meter at a signal that isn't very strong at all which means that if you try to use one, you'll have to situate the receiver/antenna such that you get a reading that is neither full-scale or at the bottom of the scale to leave room for the indication of change.

Of course, a device like a "Tiny SA" (Spectrum Analyzer) could be used to provide a visual indication, using the "Display Line", markers and stored traces to allow a quick "before and after" determination.  As mentioned above, one would want to place the antenna and the receiving device (an actual receiver or spectrum analyzer) at a fairly close distance to the device being investigated - but keep it and its antenna in precisely the same location (or connected to a fixed-location antenna) during the entire time so that one can get meaningful "before and after" readings.

Conclusion

With the use of ferrites alone, one should not expect to be able to completely suppress radiation of RF noise from an Ethernet cable - the typical maximum to be reasonably expected is on the order of about 20dB (a bit over 3 "S" units) and this can vary wildly with frequency.  In a situation where the POE device is very close to the antenna, it may not be possible to knock the interference down to the point of inaudibility in which case relocation to place the two farther apart - or trying similar devices of different models/brands to try to find a combination to reduce it..

The most effective use will be for noise sources will be at some distance from the receive antenna - particularly if a long cable is used that may act as an antenna.  Additionally, these measures can be effective in situations where your transmitter causes problems with the device itself due to ingress of RF energy along the Ethernet cable.

Be prepared to install appropriate ferrite devices at both ends of the cable as it's often the case that not only does the POE device itself (camera, wireless device) radiates noise but also the POE switch itself:  No-name brand POE power supplies and Ethernet switches are, themselves often very noisy and the proper course of action would be to first swap out the supply or POE switch with a known quiet device before attaching ferrite.

As every interference situation is unique, your mileage may vary, and the best road to success is being able to quantify that changes you have made made things better or worse.


This page stolen from ka7oei.blogspot.com

[END]

Wednesday, December 27, 2023

Remote (POTA) operation from the Conger Mountain BLM Wilderness Area (K-6085)

It is likely that - almost no matter where you were - you were aware that a solar eclipse occurred in the Western U.S. in the middle of October, 2023.  Wanting to go somewhere away from the crowds - but along the middle of the eclipse path - we went to an area in remote west-central Utah in the little-known Conger Mountains.

Clint, KA7OEI operating CW in K-6085 with Conger
mountain and the JPC-7 loaded dipole in the background.
Click on the image for a larger version.

Having lived in Utah most of my life, I hadn't even heard of this mountain range even through I knew of the several (nearly as obscure) ranges surrounding it.  This range - which is pretty low altitude compared to many nearby - peaks out at only about 8069 feet (2460 Meters) ASL and is roughly 20 miles (32km) long.  With no incorporated communities or paved roads anywhere nearby we were, in fact, alone during the eclipse, never seeing any other sign of civilization:  Even at night it was difficult to spot the glow of cities on the horizon.

For the eclipse we set up on BLM (Bureau of Land Management) land which is public:  As long as we didn't make a mess, we were free to be there - in the same place - for up to 14 days, far more than the three days that we planned.  Our location turned out to be very nice for both camping and our other intended purposes:  It was a flat area which lent itself to setting up several antennas for an (Amateur) radio propagation experiment, it was located south and west of the main part of the weather front that threatened clouds, and its excellent dark skies and seeing conditions were amenable to setting up and using my old 8" Celestron "Orange tube" C-8 reflector telescope.

(Discussion of the amateur radio operations during the eclipse are a part of another series of blog entries - the first of which is here:  Multi-band transmitter and monitoring system for Eclipse monitoring (Part 1) - LINK)

Activating K-6085

Just a few miles away, however, was Conger Mountain itself - invisible to us at our camp site owing to a local ridge - surrounded by the Conger Mountain BLM Wilderness Area, which happens to be POTA (Parks On The Air) entity K-6085 - and it had never been activated before.  Owing to the obscurity and relative remoteness of this location, this is not surprising.

Even though the border of the wilderness area was less than a mile away from camp as a crow files, the maze of roads - which generally follow drainages - meant that it was several miles driving distance, down one canyon and up another:  I'd spotted the sign for this area on the first day as we our group had split apart, looking for good camping spots, keeping in touch via radio.

Just a few weeks prior to this event I spent a week in the Needles District of Canyonlands National Park where I could grab a few hours of POTA operation on most days, racking up hundreds of SSB and CW contacts - the majority of being the latter mode (you can read about that activation HERE).  Since I had already "figured it out" I was itching to spend some time activating this "new" entity and operating CW.  Among those others in our group - all of which but one are also amateur radio operators - was Bret, KG7RDR - who was also game for this and his plan was to operate SSB at the same time, on a different band.  As we had satellite Internet at camp (via Starlink) we were able to schedule our operation on the POTA web site an hour or so before we were to begin operation.

In the late afternoon of the day of the eclipse both Bret and I wandered over, placing our stations just beyond the signs designating the wilderness study area (we read the signs - and previously, the BLM web site - to make sure that there weren't restrictions against what we were about to do:  There weren't.) and several hundred feet apart to minimize the probability of QRM.  While Bret set up a vertical, non-resonant end-fed wire fed with a 9:1 balun suspended from a pole anchored to a Juniper, I was content using my JPC-7 loaded dipole antenna on a 10' tall studio light stand/tripod.

Bret, KG7RDR, operating 17 Meter SSB - the mast and
vertical wire antenna visible in the distance.
Click on the image for a larger version.
Initially, I called CQ on 30 meters but I got no takers:  The band seemed to be "open", but the cluster of people sending out just their callsign near the bottom of the band indicated to me that attention was being paid to a rare station, instead.  QSYing up to 20 meters I called CQ a few times before being spotted and reported by the Reverse Beacon Network (RBN) and being pounced upon by a cacophony of stations calling me.

Meanwhile, Bret cast his lot on 17 meters and was having a bit more difficulty getting stations - likely due in part to the less-energetic nature of 17 meter propagation at that instant, but also due to the fact that unlike CW POTA operation where you can be automatically detected and "spotted" on the POTA web site, SSB requires that someone spot your signal for you if you can't do it yourself:  Since we had no phone or Internet coverage at this site, he had to rely on someone else to do this for him.  Despite these challenges, he was able to make several dozen contacts.

Back at my station I was kept pretty busy most of the time, rarely needing to call CQ - except, perhaps, to refresh the spotting on the RBN and to do a legal ID every 10 minutes - all the while making good use of the narrow CW filter on my radio.

As it turned out, our choice to wait until the late afternoon to operate meant that our activity spanned two UTC days:  We started operating at the end of October 14 and finished after the beginning of October 15th meaning that with a single sitting, each of us accomplished two activations over the course of about 2.5 hours.  All in all I made 85 CW contacts (66 of which were made on the 14th) while Bret made a total of 33 phone contacts.

We finally called it quits at about the time the sun set behind a local ridge:  It had been very cool during the day and the disappearance of the sun caused it to get cold very quickly.  Anyway, by that time we were getting hungry so we returned to our base camp.

Back at camp - my brother and Bret sitting around
the fake fire in the cold, autumn evening after dinner.
Click on the image for a larger version.

My station

My gear was the same as that used a few weeks prior when I operated from Canyonlands National Park (K-0010):  An old Yaesu FT-100 equipped with a Collins mechanical CW filter feeding a JPC-7 loaded dipole, powered from a 100 amp-hour Lithium-Iron-Phosphate battery.  This power source allowed me to run a fair bit of power (I set it to 70 watts) to give others the best-possible chance of hearing me.

As you would expect, there was absolutely no man-made noise detectable from this location as any noise that we would have heard would have been generated by gear that we brought, ourselves.  I placed the antenna about 25' (8 meters) away from my operating position, using a length of RG-8X as the feedline, placing it far enough away to eliminate any possibility of RFI - not that I've ever had a problem with this antenna/radio combination.

I did have one mishap during this operation.  Soon after setting up the antenna, I needed to re-route the cable which was laying on the ground, among the dirt and rocks, and I instinctively gave it a "flip" to try to get it to move rather than trying to drag it.  The first couple of "flips" worked OK, but every time I did so the cable at the far end was dragged toward me:  Initially, the coax was dropping parallel with the mast, but after a couple flips it was at an angle, pulling with a horizontal vector on the antenna and the final flip caused the tripod and antenna to topple, the entire assembly crashing to the ground before I could run over and catch it.

The result of this was minor carnage in that only the (fragile!) telescoping rods were mangled.  At first I thought that this would put an end to my operation, but I remembered that I also had my JPC-12 vertical with me which uses the same telescoping rods - and I had a spare rod with that antenna as well.  Upon a bit of inspection I realized, however, that I could push an inch or so of the bent telescoping rod back in and make it work OK for the time-being and I did so, knowing that this would be the last time that I could use them.

The rest of the operating was without incident, but this experience caused me to resolve to do several things:

  • Order more telescoping rods.  These cost about $8 each, so I later got plenty of spares to keep with the antenna.
  • Do a better job of ballasting the tripod.  I actually had a "ballast bag" with me for this very purpose, but since our location was completely windless, I wasn't worried about it blowing over.
  • If I need to re-orient the coax cable, I need to walk over to the antenna and carefully do so rather than trying to "flip" it get it to comply with my wishes.

* * *

Epilogue:  I later checked the Reverse Beacon Network to see if I was actually getting out during my initial attempt to operate on 30 meters:  I was, having been copied over much of the Continental U.S. with reasonably good signals.  I guess that everyone there was more interested in the DX!

P.S.  I really need to take more pictures during these operations!


This page stolen from ka7oei.blogspot.com

[END]